Water retention against drying with soft-particle suspensions in porous media.

نویسندگان

  • E Keita
  • T E Kodger
  • P Faure
  • S Rodts
  • D A Weitz
  • P Coussot
چکیده

Polymers suspended in granular packings have a significant impact on water retention, which is important for soil irrigation and the curing of building materials. Whereas the drying rate remains constant during a long period for pure water due to capillary flow providing liquid water to the evaporating surface, we show that it is not the case for a suspension made of soft polymeric particles called microgels: The drying rate decreases immediately and significantly. By measuring the spatial water saturation and concentration of suspended particles with magnetic resonance imaging, we can explain these original trends and model the process. In low-viscosity fluids, the accumulation of particles at the free surface induces a recession of the air-liquid interface. A simple model, assuming particle transport and accumulation below the sample free surface, is able to reproduce our observations without any fitting parameters. The high viscosity of the microgel suspension inhibits flow towards the free surface and a drying front appears. We show that water vapor diffusion over a defined and increasing length sets the drying rate. These results and model allow for better controlling the drying and water retention in granular porous materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cracking condition of cohesionless porous materials in drying processes.

The invasion of air into porous systems in drying processes is often localized in soft materials, such as colloidal suspensions and granular pastes, and it typically develops in the form of cracks before ordinary drying begins. To investigate such processes, we construct an invasion percolation model on a deformable lattice for cohesionless elastic systems, and with this model we derive the con...

متن کامل

Factors controlling the formation and stability of foams used as precursors of porous materials.

The remarkable stability of particle-stabilized foams and the opportunity to use them for production of novel porous materials have been attracting the researchers' attention in the recent years. The major aim of the current study is to clarify the factors, controlling the foamability and stability of foams, formed from concentrated silica suspensions in the presence of the amphoteric surfactan...

متن کامل

Quantifying colloid retention in partially saturated porous media

[1] The transport of colloid-contaminant complexes and colloid-sized pathogens through soil to groundwater is of concern. Visualization and quantification of pore-scale colloid behavior will enable better description and simulation of retention mechanisms at individual surfaces, in contrast to breakthrough curves which only provide an integrated signal. We tested two procedures for quantifying ...

متن کامل

Size exclusion during particle suspension transport in porous media: stochastic and averaged equations

A population balance model is formulated for transport of stable particulate suspensions in porous media. Equations for particle and pore size distributions were derived from the stochastic Master equation. The model accounts for particle flow reduction due to restriction for large particles to move through small pores. An analytical solution for low particle concentration is obtained for gener...

متن کامل

Structure and transport properties of liquid clusters in a drying porous medium.

The structure and transport properties of drying water clusters in porous media have been studied with a site-bond invasion percolation (IP) model. In this model an invader (air) enters a lattice (porous network) filled with defender (water) via a sequence of invasion steps. The decision to invade a site (pore) is made on the basis of the resistance of the bonds (throats). It is found that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 94 3-1  شماره 

صفحات  -

تاریخ انتشار 2016